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Abstract
We demonstrate AnimateAnywhere, a personalized video gen-

eration framework that generates videos of a specific person with
customized motions, scenes, and objects. Compared to existing
approaches that animate a reference person image with a fixed
background, AnimateAnywhere not only can preserve the consis-
tency of the person but also can control the context like the scenes in
the video. To achieve this goal, we first train a powerful base model
using large-scale human images and videos with diverse scenes,
poses, and captions to learn knowledge about contexts and human
motions. Then, given a short video, we propose an ID-consistent
one-shot learning method to obtain a personalized model by inject-
ing the ID-related information into the pre-trained model. Finally,
the user only needs to type in a text prompt to describe the expected
scene/objects and select a reference motion, AnimateAnywhere can
generate his/her video with the desired conditions.
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Figure 1: The illustration of ID-consistent one-shot learning.

1 Introduction
Human-centered video generation [10, 15, 17] is a challenging

task in computer vision. Human image animation, owing to its
adaptable and controllable characteristics, holds significant poten-
tial for application across various domains, including social media,
movie industry, etc. This task aims to generate a video whose ap-
pearance is consistent with the reference image based on a sequence
of motion signals (e.g. depth, pose, and mesh). The recent advent
of diffusion models [2, 6, 14] has shown its superiority in this field.

However, current human image animation methods [4, 7, 16],
often train an image encoder to extract appearance information
from a single image and discards the text condition, which signifi-
cantly reduces the flexibility and freedom of video generation. More
importantly, a single image from a single viewpoint only provides
partial reference character information for the generation of com-
plex and changeable human video and is easily limited to its lack of
dynamic information. It is difficult for the model without sufficient

https://doi.org/10.1145/3688865.3689477
https://doi.org/10.1145/3688865.3689477
https://doi.org/10.1145/3688865.3689477


MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia. Hengyuan Liu, Xiaodong Chen, Xinchen Liu, Xiaoyan Gu, & Wu Liu

Spatial Layers Temporal Layers

Text-Image-Pose 
Data Triplet

Text-Video-Pose 
Data Triplet

Base Video Generation Model Pre-training ID-consistent One-shot Learning

Stage-2

Reference Video Pre-processing Fine-tuning

Upload

A <rare-word> man …

Cross Attention Layers

𝑳𝑩𝑾 𝑳𝑩𝑾

Inference

a <rare-word> man 
dancing on the street …

Stage-1

Image

Video

Image

Video

Output Video

Figure 2: An overview of our AnimateAnywhere pipeline. The base video generation model is initialized with the pre-trained
text-to-image model [12] and integrates temporal layers [5] (left panel). We conduct two stages of fine-tuning on the reference
video for ID-consistent one-shot learning (right panel). First, we extract masks and poses from the reference video and use
GPT-4o [1] to generate a text description. Then, we fine-tune the model to map "a <rare-word> man" to the character. During
inference, users can customize the video’s context and poses using prompts and pose videos.

prior knowledge to accurately predict the overall appearance of the
reference character, which leads to artifacts or ID inconsistencies.

To better preserve the reference character’s details and allow
greater freedom in video generation, we propose a training-based
approach that fine-tunes a base video generation model on a user-
provided reference video, without needing extensive image encoder
training. This method captures the character’s appearance more
comprehensively while retaining text-based control over the video’s
context. Specifically, we introduce a base video generation model
conditioned on text and pose sequences [3], along with a two-
stage fine-tuning strategy for ID-consistent one-shot learning. As
shown in Fig. 1, the user can generate an ID-consistent video with
customized context and poses by prompt and pose video.

2 Methodology
Our goal is to provide an ID-consistent video generation scheme

conditional on text and poses through one-shot learning. To this
end, we first design a text and pose guided video generation model
in Sec. 2.1, as the left panel in Fig. 2; Besides, we propose a two-
stage fine-tuning strategy to learn the appearance concepts of the
reference character in Sec. 2.2, as the right panel in Fig. 2.

2.1 Base Video Generation Model
To improve pose alignment, we concatenate the pose latent di-

rectly with the noisy latent on the channel dimension, following the
HumanSD [9]. This approach provides stronger conditioning for de-
noising and is more parameter-efficient than ControlNet-based [18]
methods. To reduce computational costs and leverage existing im-
age generation models, we use a two-stage training strategy. First,
we train a text-to-image model on text-image-pose triplets for text
and pose-guided image generation. Then, we integrate temporal
layers and train on text-video-pose triplets for temporal modeling.

2.2 ID-Consistent One-shot Learning
To enhance ID consistency in video generation, we propose a

two-stage one-shot learning strategy that avoids extensive image
encoder training while maintaining text control over the video
context. First, we extract poses and text captions from the reference
video to build a fine-tuning dataset, using captions with a unique
identifier and character class (e.g., "A <special*-new*>man"), similar
to DreamBooth [13]. In the first stage, we treat all video frames as
images and fine-tune an intermediate image generation model to

learn the character’s appearance. In the second stage, we integrate
trained temporal layers the model obtained in the first stage and
continue fine-tuning on video data. Only the cross-attention layers
are trained, keeping other parameters frozen to preserve themodel’s
prior knowledge. This two-stage fine-tuning approach allows for
more effective learning of appearance details compared to direct
one-step video fine-tuning.

Direct fine-tuning often causes overfitting because the model
struggles to decouple the character from the background. To address
this, we propose background weakening loss andmask-guided
attention. Using an off-the-shelf model [11], we obtain foreground
and background masks𝑀𝑓 𝑜𝑟𝑒 and𝑀𝑏𝑎𝑐𝑘 for each frame. We then
reduce the influence of the background in the target loss, enhancing
the focus on learning the character.

𝐿𝐵𝑊 = E
(𝑀𝑓 𝑜𝑟𝑒 ∗ (𝜖 − 𝜖𝜃 )

2
2

)
+ E

(
∥𝛼 ∗𝑀𝑏𝑎𝑐𝑘 ∗ (𝜖 − 𝜖𝜃 ) ∥22

)
(1)

where 𝜖𝜃 represents the function of the denoising UNet, 𝛼 set as
0.001, indicates the degree of weakening of background loss.

To reduce the mutual influence between character and back-
ground during fine-tuning, we implementmask-guided attention
by assigning weights to the original attention based on the obtained
mask. This guides each part to focus on itself, enabling the model to
distinguish between the character and background, thus improving
decoupling learning of the character in the reference video.

VideoBooth

Ours

Reference

Prompt：a man is dancing on the sidewalk beside a clean city street, with bright street lights
illuminating the scene and the distant sound of traffic blending with his steps.

Figure 3: Qualitative comparisons with VideoBooth.

3 System Implementation
The base video generation model is trained for 20k steps on im-

age data and 14k steps on video data using 8 NVIDIA A100 GPUs.
For one-shot learning, we resize the training data to 512, enabling
completion with a single NVIDIA 4090, while incorporating regu-
larization data to prevent overfitting. We preserve character details
better than image encoder-based methods [8], as shown in Fig. 3.
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