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Abstract

Text-driven whole-body human motion generation,
which involves the creation of motion sequences based on
textual descriptions, has attracted much attention in the
communities of computer vision and artificial intelligence.
It aims to extend text-driven motion generation tasks to ac-
commodate complex whole-body human motions, encom-
passing facial expressions and hand gestures. Researchers
have recently developed large-scale 3D expressive whole-
body motion datasets enriched with semantic labels and
pose descriptions. Nonetheless, there remains a consid-
erable demand within the community for a straightfor-
ward and effective framework for generating and evaluating
whole-body human motion based on textual descriptions.
To address the above issues, we introduce M-Adaptor, a
two-stage Low-Rank Adaptation (LoRA)-based generator
for whole-body motion generation tasks, to improve the
quality and diversity of body motions, facial expressions,
and hand gestures. In particular, it first generates initial
coarse-grained body motion tokens from textual prompts
to enhance the stability of generated motions, then iterates
fine-grained facial expressions with the LoRA-based adap-
tor to enhance motion expressiveness. Furthermore, we ex-
tend the existing state-of-the-art CLaM model to CLaM-H
and CLaM-X for evaluation of SMPL-H and SMPL-X based
motion generation. Extensive qualitative and quantitative
evaluations demonstrate our framework’s superior perfor-
mance, with a significant R-Precision improvement for text-
driven whole-body motion generation.

1. Introduction

Text-driven human motion generation [8, 15, 30, 37]
focuses on creating human motion sequences based on
provided textual descriptions. This technology’s innova-
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(a) “A person uses their hand to scratch their ear, unsurely”

(b) “A person is sitting down still, sadly”

Figure 1. Illustration of text-driven whole-body human motion
generation including hand gestures and facial expressions.

tion and utility stem from its integration of natural hu-
man language understanding into body motion generation.
Recently, text-driven whole-body human motion genera-
tion [22, 43] has extended to incorporating control over fa-
cial expressions and hand gestures, thus enhancing the ver-
satility of this task. By analyzing and comprehending tex-
tual descriptions of whole-body motion and emotion, gen-
eration models convert human semantics directly into body
motions, hand gestures, and facial expressions. This task
has broad applications [1, 2, 23, 36], including animation
making, science fiction movie production, etc.

Although the above tasks are challenging, various mean-
ingful attempts [8, 15, 17] have been made in related re-
search areas. For instance, the T2M [15] and TM2T [16]
generators designed by Guo et al. have addressed the chal-
lenge of interpreting long sentences and generating motions
of varying lengths by utilizing RNN-based [12] generators.
Motion Diffuse [40] and MLD [7] have enhanced motion
sequence quality by introducing diffusion models into the



generation process. Additionally, T2M-GPT [39] has sig-
nificantly improved the semantic understanding of genera-
tors through the integration of Vector Quantized Variational
Autoencoders (VQ-VAE) [38] and Generative Pre-trained
Transformers (GPT) [33]. Furthermore, momask [17] pro-
vides a novel masked modeling framework that encodes the
motion sequences as multi-layer discrete tokens, improving
the realism and smoothness of text-driven motion genera-
tion with residual VQ-VAE and residual transformers.

Although the quality of generated motion sequences con-
tinues to improve, this field still faces several unavoidable
challenges. Firstly, existing generators [7, 17, 41] mostly
focus on the generation of body motions, neglecting the de-
tails of facial expressions and hand gestures. This limitation
restricts their range of applications, particularly in complex
tasks that require fine-grained coordination of expressions
and gestures, such as natural interactions of virtual charac-
ters. As shown in Fig. 1, the synergy among facial expres-
sions, hand gestures, and body motions is crucial to gener-
ating natural human motions; the lack of attention to these
details often results in unnatural results. Secondly, there is
currently no widely accepted evaluation standard to mea-
sure the accuracy of generated results that include facial
expressions and hand gestures. Existing evaluation meth-
ods [8, 15, 32] focus mainly on the quality of body motions,
failing to comprehensively evaluate the authenticity and co-
ordination of generated facial expressions and gestures. The
absence of such an evaluation standard makes it difficult to
compare the performance of different generators and hin-
ders further progress in this field. Thus, developing a uni-
versal evaluation framework that can comprehensively con-
sider the quality of body motions, facial expressions, and
hand gestures is an urgent issue to address.

To overcome these challenges, we propose M-Adaptor,
a two-stage whole-body motion generation framework
based on Low-Rank Adaptation (LoRA) [19], designed to
enhance the quality and diversity of human motion se-
quences of body motions, facial expressions, and hand ges-
tures. The first stage of M-Adaptor focuses on generating
initial coarse-grained body motion tokens directly from tex-
tual descriptions, thereby ensuring the stability of the mo-
tion sequences. In the second stage, a LoRA-based adap-
tor is employed to iteratively refine these motions, adding
detailed tokens for facial expressions to enrich the mo-
tion’s expressiveness. Furthermore, we extend the exist-
ing CLaM [8] model to two new variants, CLaM-H and
CLaM-X, precisely tailored to evaluate motion generation
based on the SMPL-H [34] and SMPL-X [29] models, re-
spectively. Specifically, CLaM-H is designed to evaluate
the effectiveness of motion generation with body motions
and hand gestures, while CLaM-X further evaluates whole-
body motion generation, encompassing facial expressions
as well. This extension allows for a more comprehensive

assessment of our motion generation capabilities across dif-
ferent human body representations. Our framework has un-
dergone extensive qualitative and quantitative evaluations
which demonstrate its superior performance in text-driven
whole-body motion generation.

In summary, the contributions of this paper are three-
fold:
• We propose M-Adaptor, a two-stage whole-body mo-

tion generation framework designed to enhance the qual-
ity and diversity of human motion sequences, encompass-
ing body motion, facial expressions, and hand gestures.

• We extend two new variants, CLaM-H and CLaM-X,
from the existing CLaM model, allowing for a compre-
hensive evaluation of various human motion generators.

• We conduct extensive qualitative and quantitative eval-
uations, demonstrating the superior performance of our
framework in text-driven whole-body motion generation.

2. Related Work
Human Motion Generation [4–6, 9–11, 13, 20, 25, 31,

35], particularly the subfield focusing on text-driven human
motion generation, involves converting textual descriptions
into 3D human motion sequences. This subfield has gar-
nered attention due to the intuitive and accessible nature of
language inputs. Early models, such as Text2Action [4]
and Language2Pose [5], utilized RNN-based [12] archi-
tecture along with curriculum learning to transform text
into motion sequences. However, these initial attempts of-
ten suffered from motion quality and global translation is-
sues. To tackle these challenges, ACTOR [30] introduced
the adaptation of VAEs [21] alongside additional text en-
coders to produce more varied motion sequences. Recently,
Guo et al. [15] introduced HumanML3D, a comprehensive
dataset, and created t2m, a method to generate human mo-
tions of reasonable lengths by estimating motion durations,
along with an RNN-based evaluator to evaluate the perfor-
mance of generation models. Subsequently, diffusion mod-
els like MLD [7] and Motion Diffuse [40] have been uti-
lized to generate motions based on a variety of conditional
inputs. T2M-GPT [39] and momask [17] advanced this
field by developing a generative framework using VQ-VAE
and generative pre-trained transformers for motion gener-
ation. Further research, including works like MDM [37]
and MotionGPT [42], has concentrated on motion comple-
tion tasks, which involve generating motion sequences con-
ditioned on partial motions, such as motion prediction or
in-between motions, ensuring the continuity of segments.
Despite the progress these methods have made, they mainly
focus on the quality of body motions and fail to comprehen-
sively evaluate the authenticity and coordination of gener-
ated facial expressions and hand gestures.

Whole-body Human Motion Generation [22, 26, 43]
is a subfield dedicated to transforming textual descriptions
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Figure 2. The architecture of our generator M-Adaptor. It first generates sequences of coarse-grained body motion tokens from pre-
trained text embedding in stage I, then iterates the mask tokens to yield more accurate sequences of fine-grained motion tokens, including
body motion, facial expressions, and hand gestures in stage II.

into whole-body 3D human motion, including body actions,
hand gestures, and facial expressions. Motion-X [22, 43]
collected by Lin et al. introduced a large-scale 3D expres-
sive whole-body motion dataset. It provides high-precision,
cost-effective, and scalable annotations derived from single-
or multi-view videos, offering frame-level pose descriptions
and semantic labels across various motion sequences. With
15.6 million 3D whole-body pose annotations, it signifi-
cantly enhanced the expressiveness, diversity, and realism
of motion generation and emerged as an essential resource
in whole-body human motion generation tasks. Addition-
ally, HUMANTOMATO [26] refined motion representation
by using uniform skeletons to generate diverse joint move-
ments. It expanded the H3D format [15] into the HUMAN-
TOMATO format to include face expressions and hand ges-
tures. This format highlights the importance of velocity in
motion reconstruction and demonstrates that enhancements
in motion representation lead to improved motion genera-
tion and reconstruction quality. However, the absence of
an open-source evaluation standard and evaluator models
makes it difficult to compare the performance of generators
and hinders further progress in this field.

3. Method

In this section, we declare the detailed framework of
our M-Adaptor generator, designed for the task of text-
driven whole-body human motion generation. Furthermore,
we introduce our open-source evaluator models, CLaM-
H and CLaM-X, specifically developed for the evaluation

of alignment between generated whole-body motion se-
quences and textual descriptions. Before describing our
methods in detail, we first introduce the necessary notation
and definitions.

3.1. Preliminary

The task of text-driven human motion generation is to
generate, given a textual description, corresponding human
motion sequences. It usually adopts the paradigm in the
following training and evaluation phases.

1) Training Phase. For a given text X =
(X1, X2, ..., XN ) containing N words, our aim is to gen-
erate a 3D motion sequence M ′ = (m′

1,m
′
2, ...,m

′
T ′) with

length T ′, as similar as possible to the real 3D motion se-
quence M = (m1,m2, ...,mT ) with length T . Some meth-
ods set the length T ′ as a precondition, such as Motion Dif-
fuse [40] and MDM [37].

2) Evaluation Phase. The generated motion sequence
M ′ and the given textual description X are processed
through the evaluator to extract the motion features, fM ′ ,
and text features, ft, respectively, and to compute met-
rics as follows: 1) Frechet Inception Distance (FID); 2) R-
Precision; 3) Diversity; 4) Multi Modality (MModality); 5)
Multi-Modal Distance (MM-Dist). Following the criteria
proposed by Chen et al. [8], the evaluator’s motion and text
extractors are trained under contrastive loss and InfoNCE
loss with the real motion sequence M and corresponding
textual description X to produce geometrically close fea-
ture vectors for matched text-motion pairs.
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Figure 3. The pre-processing stage of M-Adaptor. The motion
tokenizer contains a VAE-based encoder E and a decoder D for
quantization and dequantization. Each token Zi of time i can be
split as body motion token Bi, facial expressions token Fi, and
hand gesture token Hi

3.2. LoRA-based Generator M-Adaptor

This subsection elaborates on our LoRA-based two-
stage motion generator, named M-Adaptor, for text-driven
whole-body motion generation tasks. Similarly to the pre-
diction process of the auto-regressive model, we generate
sequences of coarse-grained body motion tokens from pre-
trained text embeddings, as shown in Fig. 2 stage I. How-
ever, unlike the classical auto-regressive model, our M-
Adaptor iterates the mask tokens to yield more accurate
sequences of fine-grained motion tokens, including facial
expressions and hand gestures, as shown in in Fig. 2 stage
II. Before describing our M-Adaptor in detail, we introduce
the pre-processing of motion tokens.

Pre-processing Stage. A motion tokenizer transforms
and quantizes raw whole-body motion sequence M into a
series of discrete tokens Z = (z1, z2, ..., zT ) within latent
space. As shown in Fig. 3, each token Zi can be split into
body motion token Bi, facial expression token Fi, and hand
gesture token Hi. It is pre-trained using the Vector Quan-
tized Variational Autoencoder (VQ-VAE) [38] and guided
by three large motion codebooks. Specifically, the motion
tokenizer contains an encoder E and a decoder D. In the
pre-processing phase, the raw motion sequences M are fed
into the encoder E to compute discrete motion tokens with
Z = E(M). For the subsequent reconstruction phase, the
prediction motion sequences M ′ can be computed from la-
tent space with M ′ = D(Z).

Stage I: Initial Motion Prediction. With the pre-trained
discrete motion tokens Z, including Bi, Fi and Hi from the
pre-processing stage, our auto-regressive generator predicts
coarse-grained body motion tokens Bi with text embedding
c extracted by TMR [32] until encountering the end token
[END], as shown in Fig. 2. This model is designed with

Component CLaM-H CLaM-X

Root Y-axis Velocity (ṙa) ✓ ✓
Root XZ-plane Velocities (ṙx, ṙz) ✓ ✓
Root Height (ry) ✓ ✓
Local Joints Positions (jp) ✓ ✓
Local Joints Rotations (jr) ✓ ✓
Joints Velocities (jv) ✓ ✓
Foot Contact (gc) ✓ ✓
Facial Expressions (f ) - ✓

Table 1. Motion components for CLaM-H and CLaM-X. Joints
for each variant includes body joints and hand joints.

causal self-attention to prevent future information leakage
when making predictions. During the training stage, the
optimization of the auto-regressive model can be considered
as a process of maximizing the log-likelihood:

Lz = EZ∼p(Z)[− log p(Z|c)] , (1)

where EZ∼p(Z) denotes the expectation over samples Z
drawn from the distribution p(Z), and − log p(Z|c) is the
negative log-likelihood of Z with given condition c.

Stage II: Motion Iteration. Constrained by the mech-
anism of auto-regressive models, zi−1 is unable to access
the information from follow-up tokens z>i, and the gener-
ation of the motion sequence Z is irreversible. It is thus
challenging to generate hand gestures and facial expres-
sions, as these fine-grained motions often need to be syn-
chronized with the entire sequence of body motions to avoid
unnaturalness. To address these issues, we propose our
motion adaptor for fine-grained motion iteration in Fig. 2
Stage II. At first, our adaptor copies and freezes the pre-
trained weights from the transformer in stage I. Then, we
replace the casual self-attention layers with self-attention
layers to capture the relationships between each motion to-
ken. Note that the above steps do not involve any parameter
changes. After that, we introduce the low-rank adaptation
layer A = N(0, σ2) and B = 0 for fine-tuning without
significantly increasing the number of parameters. During
the training process, the ground truth tokens Z, including
Bi, Fi, and Hi from the pre-processing stage, are replaced
with learnable special mask tokens [MASK] with the ran-
dom rate r. r is a random variable that belongs to a uniform
distribution over the interval [0, 1]. Our adaptor is trained
to predict the ground truth tokens from the mask tokens
[MASK] and other known conditions with the optimization
goal of maximizing log-likelihood as Eq. 1.

Inference. With the well-trained M-Adaptor, we first
extract the text embedding from the pre-trained TMR [32]
and predict the initial motion tokens with the text embed-
ding in stage I. Then, we generate iterated motion tokens
with the LoRA-based adaptor in stage II. The iteration



Methods Base Model Dataset R-Precision (%) ↑ FID → MM-Dist → Diversity →Top-1 Top-2 Top-3

T2M-H Guo et al. [15] Motion-X 50.75±0.1 72.27±0.2 83.14±0.2 0.001±0.000 2.448±0.004 10.912±0.110

CLaM-H (Ours) CLaM [8] 79.59±0.1 90.53±0.1 94.04±0.1 0.003±0.000 4.181±0.004 8.730±0.024

T2M-X Guo et al. [15] Motion-XW 51.94±0.2 73.06±0.2 83.64±0.1 0.001±0.000 2.473±0.004 11.290±0.118

CLaM-X (Ours) CLaM [8] 79.10±0.1 89.39±0.1 92.63±0.1 0.002±0.000 4.294±0.004 8.951±0.036

Table 2. Comparison with different evaluators on Motion-X and Motion-X-Whole (Motion-XW) test set using ground-truth motion
sequences. The evaluation is repeated 20 times, and the mean value is reported, supplemented by a 95% confidence interval. Note that
metrics on ground-truth motion sequences are not comparable, except for R-Precision.

stage is conducted N times; we use a high mask rate r0
in the first iteration, and gradually decrease it linearly with
rn = r0 − (r0 − rb)

n
N for the iteration n, where rb is the

lowest mask ratio. Motion tokens Z with low confidence
are preferentially masked.

3.3. Evaluator CLaM-H and ClaM-X

We extend the existing CLaM [8] model to two new
variants, CLaM-H and CLaM-X, specifically tailored to
evaluate motion generation based on the SMPL-H [34] and
SMPL-X [29] models, respectively. Although the default
evaluator proposed by Guo et al. is the most widely used
evaluation model, CLaM is recently being widely adopted
in academia communities due to its robust evaluation pre-
formance, exceeding the default evaluator by 22% Top-1
R-Precision. Specifically, CLaM-H is designed to evaluate
the effectiveness of motion generation with body motions
and hand gestures. Instead of using joint rotations to di-
rectly model motion as in SMPL-H, we model human mo-
tion sequences using root Y-axis angular velocity (ṙa ∈ R),
root XZ-plane linear velocities (ṙx, ṙz ∈ R), root height
ry ∈ R, local joint positions (jp ∈ R3N−1), local joint
rotations (jr ∈ R3N−1), joint velocities (jv ∈ R3N ), and
foot contact with the ground (gc ∈ R4). N = NB + NH

denotes the number of body joints NB and hand joints
NH . Thus, we represent the body-hand motion at frame
i as mi = {ṙa, ṙx, ṙz, ṙy, jp, jr, jv, gc}. During the train-
ing of CLaM-H, the ground truth motion sequence M =
{mi} and the given textual description X are processed
using an evaluator trained with both contrastive loss [18]
and InfoNCE loss [28] following [8]. Based on CLaM-
H, CLaM-X further evaluates whole-body motion genera-
tion, encompassing body motions, hand gestures, and fa-
cial expressions. Due to the differences of facial expres-
sions compared to body skeletons, we directly use the ex-
pression parameters (f ∈ R50) from SMPL-X to control
the face. The whole body motion at frame i is defined as
mi = {ṙa, ṙx, ṙz, ṙy, jp, jr, jv, gc, f}.

Methods Pretraining R-Precision (%) ↑
Top-1 Top-2 Top-3

T2M-X 48.47±0.4 67.20±0.3 76.77±0.2

T2M-X ✓ 51.94±0.2 73.06±0.2 83.64±0.1

CLaM-X 70.53±0.3 85.42±0.2 90.86±0.1

CLaM-X ✓ 79.10±0.1 89.39±0.1 92.63±0.1

Table 3. Ablation studies to analyze the influence of pre-
training on T2M-X and CLaM-X. The evaluation is repeated 20
times, and the mean value is reported, supplemented by a 95%
confidence interval.

4. EXPERIMENTS
We first introduce benchmark text-to-motion datasets,

evaluation metrics, and implementations in section 4.1 and
section 4.2. Afterwards, we analyze the experiments of our
new evaluator variants, ensuring that improvements in gen-
erators are accurately reflected and substantiated by the re-
liable evaluator. We compare the quantitative results of our
CLaM-H and CLaM-X in section 4.3 and the results of our
M-Adaptor in section 4.4. At last, we provide qualitative
comparison results in section 4.5.

4.1. Experimental Dataset

Our experiments are conducted on primary text-driven
human motion generation dataset Motion-X [22] and its ex-
tension Motion-X-Whole [15, 22]. We adopt the Motion-
X dataset to train the body-hand motion generator and its
corresponding CLaM-H evaluator, while we use Motion-
X-Whole to train the whole-body motion generator and its
corresponding CLaM-X evaluator, incorporating facial ex-
pressions.

Motion-X [22] comprises 55,705 human motion se-
quences and 107,522 video-level textual annotations, set-
ting a new standard for scale and detail in human motion
generation tasks. Each frame of the dataset includes expres-
sive body-hand pose annotations using the SMPL-H model,
capturing a wide range of scenarios and actions from var-
ious video sources, including games and outdoor scenes.



Generators Base Model R-Precision (%) ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 Top-2 Top-3

Real motion - 79.59±0.1 90.53±0.1 94.04±0.1 0.003±0.000 4.181±0.004 8.730±0.024 -

MotionGPT-H MotionGPT [41] 47.44±0.3 64.68±0.3 73.61±0.3 0.899±.005 5.416±.015 8.868±.042 3.778±.224

T2M-H T2M [15] 57.26±0.2 72.09±0.2 78.71±0.2 2.462±.014 5.401±.005 8.227±.036 3.189±.138

T2M-GPT-H T2M-GPT [39] 65.51±0.5 79.37±0.3 85.25±0.2 0.876±.009 5.003±.006 8.450±.045 3.650±.039

MotionDiffuse-H§ MotionDiffuse [40] 68.65±0.3 81.05±0.3 86.23±0.2 0.702±.008 4.758±.008 9.206±.043 3.974±.163

M-Adaptor (Stage I) - 67.07±0.2 80.90±0.2 86.72±0.2 0.647±.004 5.128±.006 8.557±.019 3.771±.025

M-Adaptor (Stage II) - 71.60±0.1 84.71±0.2 89.64±0.2 0.563±.003 4.718±.004 8.640±.034 3.802±.028

Table 4. Variants of existing methods for text-driven body-hand motion generation results on Motion-X dataset using CLaM-H
model as evaluator. § denotes results using the ground-truth motion length as a precondition. The evaluation is repeated 20 times, and the
mean value is reported, supplemented by a 95% confidence interval. Bold and underlined indicate the best and the second-best results.

The Motion-X dataset is pivotal in advancing expressive
whole-body motion generation, as it overcomes previous
limitations related to facial expressions and hand gestures.
Note that these statistics are for the Motion-X v1 version [3]
updated in December 2024: it is still being updated. Fol-
lowing the evaluation protocol [15, 16], the dataset is di-
vided into training, validation, and test sets at ratios of 80%,
5%, and 15% respectively. The model that performs best on
the validation set is selected, and its performance on the test
set is reported.

Motion-X-Whole [15, 22] is an extension of the above
Motion-X dataset which contains 55,705 whole-body hu-
man motion sequences and 107,522 text descriptions. The
motion sequences, originally from AMASS [27], Human-
Act12 [14], etc., undergo specific pre-processing. All mo-
tions in Motion-X-Whole have parameters of body motions,
hand gestures, and facial expressions. Each motion is paired
with at least one accurate textual description, with an aver-
age description length of approximately 15. Although Lin et
al. claim to have annotated this dataset with whole-body
pose parameters using the SMPL-X model, only part data
of the released dataset has a complete annotation of facial
parameters in the updated v1 version [3]. Note that Lin et
al. have not named Motion-X and Motion-X-Whole in the
original paper [22]. In this paper, we use these two special
names to facilitate differentiation between Motion-X with
different parameters. In accordance with [15], the dataset
is split into training, validation, and test sets at ratios of
80%, 5%, and 15%, respectively. We select the model that
achieves the best performance on the validation set and re-
port its performance on the test set.

4.2. Implementation Setup

Evaluation Metric. We use the following five distinct
metrics as evaluation metrics.

1) Frechet Inception Distance (FID). We extract fea-
tures from both the generated and ground truth motion se-
quences using the pre-trained motion encoder of the evalu-

ator. The FID between these two distributions is calculated
to measure their similarity.

2) R-Precision. For each pair of motion sequences
and descriptions, 31 other sentences are randomly selected
from the test set. The well-trained contrastive evaluator ex-
tracts the motion and text embedding, ranks the Euclidean
distances between them, and computes the average top-k
motion-to-text retrieval.

3) Diversity. The motion sequences from the test set
are randomly divided into pairs. Then, motion features are
extracted and the average Euclidean distances in each pair
are calculated, forming the diversity metric to measure the
diversity of generated motion sequences.

4) Multi Modality (MModality). For a single text de-
scription, we randomly generate 20 corresponding motion
sequences and form 10 pairs. After that, motion features are
extracted, and MModality measures the average Euclidean
distances of the pairs.

5) Multi-Modal Distance (MM-Dist). With the help
of the well-trained contrastive evaluator, we can calculate
the Euclidean distance between the text feature from the
given description and the motion feature from the motion
sequence, referred to as multi-modal distance.

Implementation details. We introduce the detailed im-
plementation as follows. Our M-Adaptor consists of 9
transformer layers for Stage I, and the LoRA module with
rank r = 64 for Stage II. Each stage trains the first 100K
iterations with a learning rate of 1e-4, and the second 100K
iterations with a learning rate of 1e-5. As for CLaM-H and
CLaM-X, the max context length of the text tokenizer is
set to 77, and context is truncated if it is over this length.
The dimension of text features is 512 to match the dimen-
sion of motion features. We train these evaluators using the
AdamW [24] optimizer, with [β1, β2] = [0.9, 0.98], a batch
size of 64, and weight decay wd = 0.01. Training lasts
120K iterations with a learning rate of 3e-5. The backbone
of CLaM-X is pre-trained using the well-trained parameters
of CLaM-H.
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Figure 4. Qualitative Comparison. We provide the visualization with body motions, facial expressions, and hand gestures using different
methods. To enhance the clarity of the visualization, the facial expressions and hand gestures are visualized separately.

4.3. Experiments on CLaM-H and CLaM-X

To thoroughly validate the effectiveness of our proposed
CLaM-H and CLaM-X evaluators in text-driven whole-
body motion generation tasks, this subsection presents a
comprehensive comparison between our evaluators and sev-
eral variants of the default evaluator as described in [15].
The evaluation focuses on the ability of these models to
evaluate and rank generated motion sequences in compar-
ison to ground-truth data.

As detailed in Table 2, we provide a quantitative anal-
ysis based on ground-truth motion sequences. The results
highlight our CLaM-H evaluator’s superior performance,
achieving a Top-1 R-Precision of 79.59% and marking a
substantial improvement of 28.84% over the original eval-
uator. Similarly, the CLaM-X evaluator demonstrates im-
pressive performance with a Top-1 R-Precision of 79.10%,
an increase of 27.16% compared to the baseline. It is impor-
tant to note that while most metrics derived from ground-
truth motion sequences can be influenced by scaling the fea-
tures of motions and texts, the R-Precision metric remains
robust and reliable for comparison purposes.

In addition, we conduct ablation studies to analyze the

influence of pre-training on CLaM-X performance, as de-
clared in subsection 4.2. The ablation studies are shown
in Tab. 3. We observe a significant improvement in Top-1
R-Precision of 8.57% (70.53%→79.10%) when adding pre-
training to our CLaM-X model, while only a slight improve-
ment in Top-1 R-Precision of 3.47% (48.47%→51.94%) on
the T2M-X model.

4.4. Experiments on M-Adaptor

In this subsection, we evaluate M-Adaptor’s perfor-
mance by comparing it with various existing methods,
including T2M [15] and T2M-GPT [39], regarding the
task of whole-body text-driven human motion generation.
The evaluation is conducted on two datasets: the compre-
hensive Motion-X dataset and its subset, the Motion-X-
Whole dataset. Following the evaluation criteria established
in [15], each evaluation is repeated 20 times to ensure sta-
tistical reliability, with the mean values reported alongside
a 95% confidence interval. This rigorous approach allows
for a robust comparison of performance.

The results of whole-body text-driven motion generation
on the Motion-X dataset are shown in Table 4, while the re-
sults on the Motion-X-Whole dataset are shown in Table 5.



Generators Base Model R-Precision (%) ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 Top-2 Top-3

Real motion - 79.10±0.1 89.39±0.1 92.63±0.1 0.002±0.000 4.294±0.004 8.951±0.036 -

MotionGPT-X MotionGPT [41] 47.01±0.2 64.07±0.2 72.55±0.2 0.908±.007 5.613±.020 8.763±.038 3.771±.201

T2M-X T2M [15] 57.40±0.1 71.74±0.2 78.20±0.2 2.804±.015 5.461±.005 8.148±.029 3.161±.111

T2M-GPT-X T2M-GPT [39] 65.55±0.5 78.63±0.3 84.88±0.2 0.931±.008 5.102±.005 8.480±.042 3.593±.033

MotionDiffuse-X§ MotionDiffuse [40] 68.27±0.2 80.67±0.2 85.89±0.2 0.713±.007 4.803±.009 9.127±.036 3.856±.138

M-Adaptor (Stage I) - 66.77±0.2 80.72±0.2 86.01±0.2 0.690±.003 5.412±.005 8.683±.021 3.691±.019

M-Adaptor (Stage II) - 71.29±0.1 84.35±0.2 89.23±0.2 0.569±.002 4.758±.004 8.803±.023 3.780±.025

Table 5. Variants of existing methods for text-driven whole-body motion generation results on Motion-X-Whole dataset using
CLaM-X model as evaluator. § denotes results using the ground-truth motion length as a precondition. The evaluation is repeated 20
times, and the mean value is reported, supplemented by a 95% confidence interval. Bold and underlined indicate the best and the second-
best results.

r0 rb
R-Precision (%) ↑

Top-1 Top-2 Top-3

0.7 0.5 69.16±0.2 82.54±0.2 87.73±0.2

0.7 0.3 69.76±0.2 83.14±0.2 87.73±0.2

0.5 0.3 70.68±0.2 82.84±0.2 88.03±0.2

0.7 0.1 70.37±0.1 83.74±0.2 88.63±0.2

0.5 0.1 71.29±0.1 84.35±0.2 89.23±0.2

0.3 0.1 69.76±0.2 82.54±0.1 88.03±0.1

Table 6. Ablation studies of the highest and lowest mask rate
r0 and rb for stage II of our M-Adaptor on Motion-X-Whole
dataset using CLaM-X model as evaluator.

Compared to previous methods, we find that our M-Adaptor
is effective and outperforms the performance under most
metrics, especially in R-Precision. It even outperforms the
huge MotionGPT [41] model containing 770M parameters.

Additionally, we conduct ablation studies to investigate
the influence of key hyperparameters on M-Adaptor’s per-
formance. Specifically, we examine the effects of the high-
est and lowest mask rates, denoted as r0 and rb, as well as
the iteration number N in Stage II of the model. The results
of these studies are detailed in Tab. 6 and Tab. 7, respec-
tively. Our research indicates that setting r0 to 0.5, rb to
0.1, and N to 4 yields optimal performance in terms of R-
Precision metrics. These insights provide valuable guidance
for fine-tuning the M-Adaptor to achieve its best possible
performance in text-driven motion generation tasks.

4.5. Qualitative Comparison

We show qualitative visualizations in Fig. 4, where we
compare our M-Adaptor in each stage and with an existing
method. Our two-stage M-Adaptor exhibits a more robust
semantic understanding ability. As depicted in Fig. 4 (a), in
stage II our adaptor can correct the wrong order of gener-
ated movements from stage I. Moreover, as shown in Fig. 4
(b), our generator is able to better understand semantic dif-

N
R-Precision (%) ↑ TimeTop-1 Top-2 Top-3

1 68.86±0.2 83.14±0.3 87.44±0.2 +3.4%
2 69.76±0.2 83.14±0.2 88.33±0.2 +6.9%
3 70.37±0.2 83.44±0.2 88.63±0.1 +10.3%
4 71.29±0.1 84.35±0.2 89.23±0.2 +13.8%
5 70.68±0.2 83.44±0.2 89.53±0.2 +17.2%

Table 7. Ablation studies of the iteration number N of stage II
on Motion-X-Whole dataset using CLaM-X model as evalua-
tor. ‘Time’ means the increase of inference time in percent.

ferences between similar words compared to the existing
T2M-GPT-X method.

5. CONCLUSION
In this work, we focus on text-driven whole-body hu-

man motion generation, addressing the challenges of gen-
erating natural and expressive human motions that include
body motions, facial expressions, and hand gestures. We
introduce M-Adaptor, a novel two-stage framework, which
significantly enhances the quality and diversity of gener-
ated motion sequences. Additionally, we extend the ex-
isting CLaM model to CLaM-H and CLaM-X, providing a
comprehensive evaluation framework for text-driven whole-
body human motion generation. These evaluators enable a
more thorough evaluation of motion generation capabilities.
Extensive qualitative and quantitative evaluations demon-
strate the superior performance of our framework, with sig-
nificant improvements in R-Precision and FID. Our contri-
butions pave the way for more natural and expressive hu-
man motion generation, with broad applications in virtual
characters, motion-guided video generation, and 3D digi-
tal humans. Future work will focus on further refining the
expressiveness of generated motions and exploring new ap-
plications in interactive and immersive environments.
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